SET THEORY

Subject: Discrete Mathematics

Subject Code: BMAT-602B

Dr. Hitesh Kumar Ranote

Assistant Professor

School of Basic and Applied Science

Definition

- A set is a collection of well-defined and distinct objects.
- The objects in a set are said to be *elements* or *members* of the set.
- Sets are usually denoted by capital letters *X*, *Y*, *Z*,...
- Elements of a set are usually denoted by lowercase letters x, y, z, \dots
- Examples of a set:
- The set of days of a week.
- The set of all states of India.

Some Standard Sets

- N represents the set of natural numbers = $\{1,2,3,4,...\}$
- I or Z^+ represents the set of positive integers = $\{1,2,3,4,\ldots\}$
- Z represents the set of all integers, positive, negative and zero.
- Q represents the set of all rational numbers.
- R represents the set of all real numbers

Types of Sets

Empty Set: A set is said to be empty if it contains no elements.

Example: $X = \{\}$ or $X = \emptyset$.

Singleton Set: A set is said to be singleton if it contains only one element.

Example: $X = \{10\}.$

Finite Set: A set is said to be finite if it has a finite number of elements.

Example: $X = \{1, 2, 3, 4, 5, 6, 7\}.$

Infinite Set: A set is said to be infinite if it has an infinite number of elements.

Example: Set of integers

Subset: A set X is a subset of Y if every element of X is in Y.

• Example: $X = \{1,2,3,4\}, Y = \{1,2,3,4,5\} \Rightarrow X \subseteq Y$.

Superset: Y is a superset of X.

• Example: $Y \supseteq X$.

Power Set: The power set of X is the set of all subsets of X.

• Example: $X = \{a,b\}, P(A) = \{\{\}, \{a\}, \{b\}, \{a,b\}\}.$

Disjoint Sets: Two sets are said to be disjoint if they have no common elements.

• Example: $X = \{1,2\}, Y = \{5,7\} \Rightarrow X \cap Y = \emptyset$.

Universal Set: A set that contains all objects under consideration.

• Example: If $X = \{1,2\}$, $Y = \{2,3\}$, then $U = \{1,2,3,4,...\}$.

Venn diagrams: The relations between sets can be illustrated by certain diagram is called Venn Diagram.

Operations on Sets

Union of two sets: If X and Y are two sets, then their union is the set containing all elements of X and Y. It is denoted by X U Y.

• Example: $A = \{a,b,c\}, B = \{e,f,g\} \Rightarrow A \cup B = \{a,b,c,e,f,g\}.$

Intersection of two sets: If X and Y are two sets, then their intersection is the set containing all common elements of X and Y. It is denoted by $X \cap Y$, is the set Example: $A = \{1,2\}, B = \{2,3,4\} \Rightarrow A \cap B = \{2\}.$

Complement of a set: If X is a subset of a universal set U. Then the complement of a set X is the set of all those elements of U which do not belong to U. It is denoted by X'.

- Example: $U = \{1,2,3,4,5,6\}, X = \{1,2,3,4\} \Rightarrow X' = \{5,6\}.$
- Difference of two sets: The difference of two sets X and Y is the set of elements in X but not in Y. It is denoted by X Y.
- Example: $X = \{1,2,3\}, Y = \{3,4,5\} \Rightarrow X Y = \{1,2\}.$

Conclusion

Set operations play a crucial role in mathematics and have diverse applications in fields such as logic, probability, and database management.